Wednesday #5
5m	Announcements and questions
15m	Computational experiments
For some reason, bioinformatic assays have historically been treated differently from experimental assays
	No experiment involving 20 different steps would be published without each being well-controlled
	No experiment would be run without comprehensive records in a lab notebook
	Yet computational results involving hundreds of instructions are believed without proof or documentation
Every program contains bugs
	You will never find them by searching for them
	You might find them by testing positive and negative controls for each function and step
Every program is incomprehensible
	Even to you, when you need to respond to reviews six months from now
How can you...
	Test your computational experiments using positive and negative controls?
	Document your computational experiments so you remember what you did?
Suppose that we're designing an experiment to test whether pathways are present or absent in a genome
	Your input data are a newly-assembled, unannotated genome; how do you know the assembly's correct?
		Positive control: does the sequence contain a large enough # of nucleotides? GC%?
		Negative control: no more than one contig? Fewer than expected stop codons?
	First you'll need to run a gene caller on the genome to find open reading frames
		How do you remember which program you ran, with what parameters?
		Positive control: do you find a reasonable # of ORFs? Are they all of reasonable length?
			Are they on both strands? Do you find the ribosome?
		Negative control: do you find a reasonable # of ORFs? Are they mostly non-overlapping?
	Then you'll need to run a functional annotation program to figure out what the genes do
		Which program, with what parameters?
		Positive control: do most genes have different functions? Is the distribution as expected?
		Negative control: do you not find many copies of the same function?
Are functions from unexpected organisms excluded?
	Then you'll need to actually check for all of the genes in each pathway
		How do you define or document when a pathway is "present" or "absent"?
			100% of the genes? >90%? <10%? Do you count undetermineds?
		Positive control: are a reasonable number of pathways present?
			Can you manually verify pathways that must be present, e.g. DNA replication?
		Negative control: are a reasonable number of pathways present?
			Are pathways from unexpected organisms excluded?
Always manually inspect each step of a computational experiment
	Never underestimate the power of looking at your data!
	Examine a small set of each input/output by hand, and check that the results are correct 
	Sean Eddy calls this subsetting the data - look at a small, representative subset you can see by eye
Computational project management, inspired by Bill Noble
Finding your way around the lab involves knowing where things are and how they're organized
	Computational projects are no different
	Four components:
1. Where you put your data
2. How you write processing modules (Python!)
3. How you put modules together to generate results
4. How you track changes to your modules (and results)
Where you put your data is usually easiest, and largely up to you
Bill suggests one file/folder organization
I typically use:
		One root directory per project
		Subdirectory called "input" for original, immutable data
		Subdirectory called "src" for processing modules (Python or otherwise)
		Subdirectory called "tmp" for generated small metadata (gene lists, etc.)
		Subdirectory called "output" for generated results
		Subdirectory called "etc" for configuration files
		Subdirectory called "doc" for documentation
		One driver script (using a workflow system) in the project directory
		One set of shared functions (Python) in an external directory
I find this has two advantages over Bill's scheme
		Workflow system automates driver script and restartability
		Change tracking system automates time-stamping and backups
10m	Documenting computational experiments
Typically at least three types of documentation that accompany a computational experiment
	Descriptions of data
	Documenting your code
	Logging your experiment (lab notebook)
Descriptions of data and files
	Often best stored as a readme.txt file or comparable in the directory containing files
	This can contain very simple, free-text descriptions of what the files are, where they came from, and when
	Especially true for input data you downloaded from elsewhere, but useful for all nontrivial files
Computational lab notebooks
	No one right way to do this, but not doing it is definitely wrong!
	I use Evernote and create pages logging each day or project
	Many of my lab members use wiki pages and create one for each day or project
	There exist very formal packages like Sweave, KnitR, and IPython Notebook integrating code and execution
		Scientific workflows
	I've even seen other labs do this using Facebook or Tumblr
Documenting your code
	There's such a thing as too much and too little
	Appropriate amount of documentation:
		One docstring header for each function that describes its purpose, inputs, and outputs
		Single line # comments for particularly complex/unintuitive computations
		There are environments that provide pretty formats in which to do this (e.g. Sphinx)
			Format isn't so important - doing it is
def power( dBase, dExponent ):
	"""
	Returns a number taken to the requested power.

	Arguments:
	dBase (float) number to be exponentiated 
	dExponent (float) power it is raised to
	Returns:
	(float) dBase raised to dExponent power
	"""

	return ( dBase ** dExponent )	
20m	Positive and negative controls: unit tests and doctest
Unit tests are small code snippets that test one input to one function
	Usually involve inputs that are chosen to exercise specific functionality
	Should combine basic (representative) cases and corner cases, i.e. those expected to be tricky
		Factorial: basic case is factorial( 5 ), corner cases are factorial( 0 ), factorial( 1 ), or factorial( 100000 )
You've been running these all along!
	Each example in a problem set of a function's expected output for a given input is a unit test
	Each time you run a function and print its result in your main method is a unit test


Python provides the doctest module to simplify, formalize, and automate this process
	doctest embeds specially-formatted comments directly in your code
	They specify example inputs and expected outputs for your functions
	Can be used for quick-and-easy unit testing
Using doctests
Python docstrings in general are multi-line strings
	Act much like multi-line comments in other programming languages
	Start and end with three quotes rather than one: """this is a docstring"""
Typically used for documentation (hence the name) and placed immediately after the item being documented
	dSS = 0
	"""dSS is a floating point value that will accumulate the sum-of-squares of our input."""
	for strLine in sys.stdin: do stuff
For doctests, they should be placed after function definitions
	And contain sample transcripts of Python code that will test the function
	Transcripts consist of two types of lines:
		Python commands to be executed during testing, preceded by >>> (like the interactive Python prompt)
		Expected output, preceded by nothing (bare text)
def factorial( iN ):
	"""
	>>>factorial( 0 )
	1
	>>>factorial( 1 )
	1
	>>>factorial( 5 )
	120
	>>>factorial( 100 )
	93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L
	>>>import random
	>>>iInput = random.randrange( 10 )
	>>>factorial( iInput + 1 ) == factorial( iInput ) * ( iInput + 1 )
	True
	"""
	iRet = 1
	for i in range( 2, iN + 1 ):
		iRet *= i
	return iRet


Running doctests
Python will automatically:
	Execute each doctest for you
	Compare the function's results with what's expected
	Flag any test that fails
Execute all doctests in a script named program.py using:
	python -m doctest program.py
In order for this to work, your program must follow the correct __name__ == "__main__" convention!
	Yet another reason to follow the correct magic incantations - automated testing is invaluable
Doctest caveats
Beware of floating point values and rounding
	Remember back when we said Python floating point representation was complex:
	>>>22.0 / 7
	3.142857142857143
	doctests provide the ELLIPSIS option to be lazy when trying to guess how Python will print long decimals
	>>>22.0 / 7 #doctest: +ELLIPSIS
	3.14...
Beware of unordered results
	The following will not do what you want:
	>>>setiData = set([3, 2, 2, 1])
	>>>print( setiData )
	set([3, 2, 1])
	Benefits from judicious use of sort
Beware of random results
	Anything that uses truly random numbers will not have an "expected" output
	You can indicate that a doctest isn't a test, but just documentation, using the SKIP annotation
	>>>dValue = random.random( )
	>>>print( dValue ) #doctest: +SKIP
	0.123
Beware of results containing tabs or complex whitespace
	Because of the way Python formats input, output, and docstrings, non-space whitespace gets tricky
	Doctests will work, but they will sometimes fail to match expected output for mysterious reasons
	You can avoid this misbehavior using the NORMALIZE_WHITESPACE annotation
	>>>adData = [1.1, 2.2, 3.3]
	>>>print( "\t".join( adData ) ) #doctest: +NORMALIZE_WHITESPACE
	1.1	2.2	3.3


Designing positive and negative controls
There are at least three important kinds of controls to include in a computational experiment
	Typical cases - "average" input that should generate a reasonable result (positive controls)
	Edge or boundary cases - unusual input that's valid but handled specially (e.g. 0!, 0/0)
	Errors - inputs that should be invalid or generate an error (negative controls)
These are the three kinds of examples you should recognize from the problem sets!
	You can design them directly into your own doctests
def test_aromatic( strSeq, iCount ):
	"""
	# Positive control
	>>>test_aromatic( "DEFYWAD", 3 )
	True
	# Negative control
	>>>test_aromatic( "DEAD", 3 )
	False
	# Edge cases
	>>>test_aromatic( "", 3 )
	None
	>>>test_aromatic( "DEAD", 0 )
	None
	"""
	if ( not re.search( r'^[RHKDESTNQCUGPAVILMFYW]+$', strSeq ) ) or \
		( iCount < 1 ):
		return None
	return ( not not re.search( r'[FYW]{' + str(iCount) + '}', strSeq ) )

10m	Command line arguments and argparse
A common way of documenting programs and their parameters is using command line arguments
	We've discussed a "raw" way of handling these before using sys.argv
	Python makes it easy to do more with them:
		Include automatically generated help describing what a program does
		Include configurable parameters that can be set to useful default values
The argparse module does exactly these two things
	It lets your program print a description of what it does using the -h flag
	It processes sys.argv for you directly into documented, configurable variables
Paradigm is:
	Step 1: argp = argparse.ArgumentParser( prog = "script_name", description = "help_text" )
	Generates an "argument parser" object that will configure help and parameters for you
Step 2: argp.add_argument( "-x", dest = "iVariable", metavar = "name", type = int,
		default = 123, help = "help_text" )
	Indicates that your program should accept a command line parameter marked as "-x"
Named name, of type type, stored in variable dest, with a default value, and a useful help description
	Step 3: args = argp.parse_args( )
		Automatically sucks raw strings from sys.argv and validates them, printing help if wrong
Stores them as properly-typed variables in an arguments object
	Step 4: Use args.iVariable etc. to access the stored values
		These can then be used to actually run your program
argp = argparse.ArgumentParser( prog = "grep_fasta.py",
	description = "Reads a list of row identifiers and outputs all input FASTA sequences matching any of these IDs." )
argp.add_argument( "-f",		dest = "fInvert",	action = "store_true",
	help = "Invert to print non-matching sequences" )
argp.add_argument( "-w",		dest = "iWrap",		metavar = "wrap",
	type = int,		default = 60,
	help = "Number of nucleotides to print per line before linewrapping" )
argp.add_argument( "istmRows",	metavar = "rows.txt",
	type = file,
	help = "File from which row IDs to match are read" )
def _main( ):
	args = argp.parse_args( )
	grep_fasta( args.istmRows, sys.stdin, sys.stdout, args.fInvert, args.iWrap )
40m	Mini-lab
Download the activity file from the course web site as usual
	This one is not IPython Notebook, it's instead a series of command line scripts instead
	Helps to exercise documentation, command line interfaces, testing, and debugging
[bookmark: _GoBack]15m	Debugging
There are many ways to debug your computational experiments
	Important principle remains subsetting: check by eye that every step of an example produces correct results
	How do you check individual steps of a complex Python script that you can't "see" running?
Two complementary strategies when you think you have a problem:
	Design a minimal test case that reproduces the problem, without any extra steps or complexity
	Strategically print the values of your variables and computations while a program is running
A debugging example
Consider the following example:
def wrong_factorial( iN ):
		iRet = 1
		for i in range( 1, iN ):
			iRet *= i
		return iRet
wrong_factorial( 3 )  2 (?!?)
Let's test this...
def wrong_factorial( iN ):
		iRet = 1
		print( "Beginning: " + str([iN, iRet]) )
		for i in range( 1, iN ):
			iRet *= i
			print( "After multiplying " + str(i) + " iRet is " + str(iRet) )
		return iRet
wrong_factorial( 3 ) →
Beginning: [3, 1]
After multiplying 1 iRet is 1
After multiplying 2 iRet is 2
Saving debugging output
In some cases, this can produce a lot of output!
	Suppose your minimal test case is still 100 genes long - understandable, but wordy
This technique allows you to easily save your debugging output to a file to peruse and search
	python script_with_debugging_output.py < minimal_test_case.txt > debugging_log.txt
You can then open up the debugging_log.txt file in an editor to read
	Rather than having watch all your output fly by on the command line
Standard error
There's one last subtlety to add
	Sometimes the results of print debugging output can be hidden if your Python program crashes
	It also mixes your debugging info with your "normal" Python output data
Just like standard input and output were created to accommodate normal data...
	Python provides one more "standard" output stream especially created for debugging
	Standard error, or stderr, is a second output stream just like standard output except:
	It's created especially for debugging output, and it can be separated from stdout
You can use it in your Python programs like this:
	sys.stderr.write( "After mult " + str(i) + " iRet is " + str(iRet) + "\n" )
	Note: remember that ostm.write does not automatically append a newline like print does
		Just means you have to remember to add it yourself - no big deal
And then save the extra debugging output like this:
	python script_with_debugging_output.py < minimal_test_case.txt
> normal_output.txt 2> debugging_log.txt
	Creates two different text files containing output from stdout and stderr, respectively
	Anything that you print or sys.stdout.write will end up in normal_output.txt
	Anything that you sys.stderr.write will end up in debugging_log.txt
	It's also guaranteed to be saved even if  your program crashes, which is nice
		print usually will too, but it's not guaranteed under all circumstances
One last example:
def wrong_factorial( iN ):
		iRet = 1
		sys.stderr.write( "Beginning: " + str([iN, iRet]) + "\n" )
		for i in range( 1, iN ):
			iRet *= i
			sys.stderr.write( "After multiplying " + str(i) + " iRet is " + str(iRet) + "\n" )
		return iRet
	print( wrong_factorial( 3 ) )
If I now run:
	python script.py > output.txt 2> debugging.txt
	output.txt → 3
	debugging.txt → "Beginning: [3, 1]..."
Reading
doctests:			http://docs.python.org/library/doctest.html
argparse:			http://docs.python.org/library/argparse.html
