
1 Python in its Natural Habitat

”Crikey!” - The Crocodile Hunter

In which we track the beast to its lair and examine its native lifestyle.

For the purposes of this course, we’ll be interacting with the Python programming language using three main tools:

1. python, the Python interpreter.

2. jEdit, a Python (and general text) editor.

3. The Command Prompt, Terminal, Console, Command Line, Shell, or whatever other name you choose to
apply to the textual environment in which you’ll manipulate files and programs. Yes, all of those words really
do mean essentially the same thing.

All of these things are independent of the Python programming language, which is an abstract entity not unlike the
English language (except less confusing, hard as that may be to believe for those of you who have always known
English but never known Python). And for that matter, learning Python is not all that different from learning any
programming language; in some sense, if you’ve seen one, you’ve seen them all. That’s one of the reasons why this
portion of the course is important - once you tackle Python, you can go out and use the programming environment
of your choice to solve the problems of your choice.

1.1 The Command Prompt

"In the Beginning was the Command Line” - Neal Stephenson, "In the Beginning was the Command Line”

First of all, you’ve all already encountered the relic that is the command prompt - and, as Neal Stephenson discusses
in his essay of the same name, it’s been around since the start. To provide some context, everybody nowadays
interacts with computers using a graphical user interface, or GUI. This provides a means by which all of the virtual
things you can’t see (bits and bytes representing data on your hard disk) are represented by symbolic real-world
objects (files and folders). If you go to My Computer (or, for you Mac folks, your hard disk icon), you don’t see a
bunch of ones and zeros - you see a virtual space containing icons, each of which represents an individual document
file, application program, or directory folder.

That being said, the command prompt is no different. Windows Explorer (the thing you get by clicking on My Com-
puter) or the Macintosh Finder (the thing you get by clicking on your hard disk) allows you to navigate through
folders, launch programs, and examine files by clicking on them; information is provided in the form of lists contain-
ing different icons. The command prompt allows you to navigate through folders, launch programs, and examine
files by typing in specific commands. Now, though, information is provided in the form of textual descriptions
rather than pretty pictures.

I won’t bore you with the details here - if you’re interested, go read the aforementioned Neal Stephenson work (it’s
freely available online at http://www.cryptonomicon.com/beginning.html). But I will provide a list of analogous
tasks between the usual graphical Explorer/Finder interface and their textual command line counterparts. And,
because I’m just that nice, I’ll include a list of handy-dandy command line shortcuts that will make your life in its
walls of black-and-white text a little less constraining. I’ll even break them down into Windows and Macintosh
sections, although you should note that almost everything is the same or nearly so (determining the precise history
and reasons for this fascinating piece of divergent/convergent evolution is left as an exercise for the reader). But
first...

A Note on Paths

You’ll see me refer to something called a path here, and you’ll get to know the suspiciously similar PATH variable
intimately below when you set up Python to run on your computer. When dealing with the command prompt,
a path is a complete list of directory names, separated by a backslash \ (on Windows) or a forward slash / (on a
Macintosh), specifying where a particular directory or file lives. So if you normally get to a file by clicking on the

H02-1

C: drive in Windows Explorer, then on Python26, then on Java, then on python.exe, the full path to that file is
C:\Python26\python.exe. Note that paths can refer to directories as well; you could say that the file python.exe

resides in the directory C:\Python26\. And, for the curious, the backslash (or slash) at the very end is optional. A
couple points of interest:

• Spaces in paths can be problematic. I won’t type them here, but you’ll often need quotes around paths with
spaces (e.g. "C:\Program Files\jEdit"). Quotes will work on either Windows or Macintosh machines; on a
Mac, you also have the option of simply preceding each space with a backslash (e.g. /Program\ Files/jEdit,
although you’ll be hard pressed to find such a directory on a Mac).

• Almost everything we say about the Command Prompt on a Windows machine applies to the Terminal on
a Macintosh machine. You’ll always have to turn backslashes into forward slashes, and you can omit the C:

business (the root directory on a Macintosh is just /, not C:\).

• Finally, Macs also have the concept of a home directory, which is often represented by a single tilde ~. You
can think of this sort of like your Documents or user directory on Windows. So on a Windows machine, if
you created the path C:\Users\chuttenh\Destktop\problems02 for the first assignment, on a Mac you might
create ~/Desktop/problems02.

Also note that paths can be either absolute or relative. A path is absolute if it begins with C:\ (on Windows) or just
a slash / (on a Macintosh). This is also known as a full path, since you can use an absolute path successfully no
matter what your current directory happens to be. "What," you say, "is a current directory?" Just like you generally
have one topmost window in Explorer or the Finder, representing the directory full of files that you’re currently
inspecting, the command prompt always has a single unique path called your current or working directory. You
can think of it like a cursor inside of your file system; if you ask the computer to do something, it’ll assume (given
no additional information) that you want to do it there. So if you just tell it to, say, python problems02.py, it’ll
assume you mean the problems02.py file that’s in the current directory. The current directory is always displayed
at the bottom of the command prompt.

We still haven’t gotten to relative paths, though. Suppose we call the current directory .. That’s right, a period
- the current directory is always represented by a single period, and its parent directory is always represented by
two periods ... A relative path is assumed to start from the current directory, and you can include references to the
parent directory (..) or to child directories in the text of the path. This doesn’t make any sense at all when I try to
say it in words, so let’s look at some examples. If my current directory is:

C:\Program Files\jEdit

Then the following paths all refer to the same file:

C:\Program Files\jEdit\doc\users-guide\index.html

doc\users-guide\index.html

.\doc\users-guide\index.html

..\jEdit\doc\users-guide\index.html

..\..\Program Files\jEdit\..\jEdit\doc\.\.\.\users-guide\index.html

The last few get a little esoteric (i.e. don’t ever let me catch you actually using something like that!), but they’re still
technically valid. If you change your current directory to, say, C:\Program Files, only the first path (the absolute
one) will still work. Now on to the good stuff...

I’m using a Macintosh. I want to...

• Get things started.

– Finder: Double click on your hard disk icon to open a Finder window.

– Terminal: Navigate to Applications/Utilities and launch Terminal to open a new command line.

• Change my current directory.

H02-2

– Finder: Double click on a folder to activate it in the current window.

– Terminal: Type "cd <path>" to change to the given (absolute or relative) location. "cd" stands for "change
directory."

– Example: cd ~/Desktop/problems02

• See the files in my current directory.

– Finder: Um... they’re just sort of there, listed as icons, in the window.

– Terminal: Type "ls" to show the files in the current directory, or "ls <path>" to show the files in the given
location. "ls" stands for "list."

– Example: ls /Applications

• Launch an application or open a file.

– Finder: Double click on a program or document icon.

– Terminal: Type in the program or file’s path. Note that MacOS is a little strange about this; most "normal"
programs will show up as weird things that end in .app. Caveat typer.

– Example: python problems02.pya

• Move a file.

– Finder: Click and drag.

– Terminal: Type "mv <file> <path>" to move the given file to the given location. Be careful - if <path>
is a path to a file (rather than a directory), you’ll overwrite it (i.e. you’ll rename <file> instead of or in
addition to moving it).

– Example: mv problems02.py ~/Desktop/problems02

• Delete a file.

– Finder: Command-Delete or click and drag to the trash bin.

– Terminal: Type "rm <file>" to completely delete the given file. Note that this does not move it to the
trash, it just goes byebye.

– Example: rm problems02.py

• Rename a file.

– Finder: Enter or click and wait.

– Terminal: See the bit above about mv.

– Example: mv problems02.py problems42.py

• Create a directory.

– Finder: Command-Shift-N or Control-click.

– Terminal: Type "mkdir <path>" just like in the assignment. If the given path already exists, it’ll give you
a little error message without hurting anything.

– Example: mkdir ../problems03

H02-3

I’m using Windows. I want to...

• Get things started.

– Explorer: Double click on My Computer on the desktop, or single click on it in the Start menu.
– Command Prompt: Either select Run from the Start menu and type cmd, or select Start/Programs/Accessories/Command

Prompt.

• Change my current directory.

– Explorer: Double click on a folder to activate it in the current window (or, depending on your settings, a
new window).

– Command Prompt: Type "cd <path>" to change to the given (absolute or relative) location. "cd" stands for
"change directory."

– Example: cd c:\Users\chuttenh\Desktop\problems02

• See the files in my current directory.

– Explorer: Still just sort of there, listed as icons.
– Command Prompt: Type "dir" to show the files in the current directory, or "dir <path>" to show the files

in the given location. "dir" stands for "directory."
– Example: dir \Users\chuttenh

• Launch an application or open a file.

– Explorer: Double click on a program or document icon.
– Command Prompt: Type in the program or file’s path. This will actually work with both applications and

documents; the former will launch the program, and the latter will open the document just like clicking
on it in Explorer.

– Example: python problems02.py

• Move a file.

– Explorer: Click and drag.
– Command Prompt: Type "move <file> <path>" to move the given file to the given location. Be careful -

if <path> is a path to a file (rather than a directory), you’ll overwrite it (i.e. you’ll rename <file> instead
of or in addition to moving it).

– Example: move problems02.py c:\Users\chuttenh\Desktop

• Delete a file.

– Explorer: Delete or click and drag to the recycling bin.
– Command Prompt: Type "del <file>" to completely delete the given file. Note that this does not move it

to the recycling bin, it just goes byebye.
– Example: del problems02.py

• Rename a file.

– Explorer: Enter or click and wait.
– Command Prompt: Type "ren <old> <new>", where <old> and <new> are both paths to files.
– Example: ren problems02.py ILikeToast.py

• Create a directory.

– Explorer: File/New/Folder or right-click.
– Command Prompt: Type "mkdir <path>" just like in the assignment. If the given path already exists, it’ll

give you a little error message without hurting anything.
– Example: mkdir ..\problems03

H02-4

1.2 Command Line Quick Reference

Below, <file> represents a path to a document file, <dir> a path to a directory, and <path> a path to either one.

Macintosh

Action Command Example
Repeat last command Up arrow
Complete a partial filename Tab cd prob<press Tab here>

Move to start of line Control-A
Move to end of line Control-E
Change current directory cd <dir> cd ~/Desktop/problems02

Launch a program/file <file> python problems02.py

List files ls or ls <dir> ls ~/Desktop

Move a file mv <file> <path> mv problems02.py ../

Rename a file mv <file old> <file new> mv problems02.py problems42.py

Delete a file rm <file> rm problems02.py

Create a directory mkdir <dir> mkdir problems03

Windows

Action Command Example
Repeat last command Up arrow
Complete a partial filename Tab cd prob<press Tab here>

Move to start of line Home
Move to end of line End
Change current directory cd <dir> cd c:\Users\chuttenh\Desktop\problems02

Launch a program/file <file> python problems02.py

List files dir or dir <dir> dir \Users

Move a file move <file> <path> move problems02.py ..\

Rename a file ren <file old> <file new> ren problems02.py problems42.py

Delete a file del <file> del problems02.py

Create a directory mkdir <dir> mkdir problems03

H02-5

1.3 All Those .Exes

"Live in Texas" - George Strait, "All My Ex’s Live In Texas"

That’s probably more than you ever wanted to know about about the command line - and after all that, it could be
argued that the command prompt by itself is fairly useless. It exists as a tool for interacting with files and programs;
it’s not much fun if you don’t use it to run other things! And of course, what we’ve been using it for so far (and
will continue to use it for) is to run Python. When we say "run Python," though, we’re really talking about a suite
of interacting programs: an interpreter that makes your source files do cool stuff, and an editor (jEdit) that creates
.py source files so that you don’t have to enter every command individually. Oh, and so the Mac users don’t feel
bad, note that I don’t intend any Windows bias by referring to these as .exe files - it’s just a convenient way of
specifying "Python the program on your computer" versus "Python the abstract language" or "Python the thing that
eats rodents."

1.3.1 python.exe

python.exe, pronounced "python-dot-ee-ex-ee," refers to the Python interpreter, as we’ve said a few times now.
But what does that mean? Well, think about how your programs start out. A .py file is just plain text, and given the
current state of natural language processing (the field of making computers understand normal human languages
like English), a computer is no more able to understand that text than it is the text of A Clockwork Orange (then
again, neither is the average human being). An interpreter is any program that turns a human-readable source file
(stored as text) into series of machine-executable commands (stored in memory as binary gibberish) and executes
them to make the computer do something. As with most commands that you can execute from the command
prompt, python.exe accepts command line arguments, one or more words, options, or filenames after the command
itself that modify how it executes. If you run Python with no arguments, you’ll get a bit of information followed by
a new prompt that looks something like this:

Python 2.6.6 (r266:84297, Aug 24 2010, 18:46:32) [MSC v.1500 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>�>�>

As discussed in the notes, this is an interactive Python session, where you can type Python statements into the
interpreter by hand one-by-one. That gets old real fast. Trust me. Instead, most programs are stored in source files
that are just plain text, with a special .py extension, and run by providing that file name to the Python interpreter
on the command line:

python problems02.py

This will run the entire contents of problems02.py as a single Python program all in one go. Note that you do not
need to specify the .exe part of the program name, even on Windows (although you can).

However, in order for Windows or MacOS to know what you mean by python, the operating system must know
how to locate that program from the command line. In order to make sure everyone’s on the same page with respect
to Python, the following instructions provide everything you need to get it up and running:

1. Go to http://www.python.org/download/, download the appropriate version of Python 2 for your operating
system, and install it. As of this writing, the following caveats hold:

(a) Many 64-bit extensions don’t work very well, so even if you’re running 64-bit Windows, install 32-bit
Python.

(b) The latest version is 2.7; these notes were written for 2.6, and the two are essentially identical. Python 3
has been released, but is not yet compatible with many common add-ons and modules, so we will not
be using it just yet (at least not this year!), and you should only install it if you want to get to know it
separately on your own.

2. After Python has fully installed, add it to your path:

H02-6

(a) On Windows:

i. Go to the Control Panel, System, Advanced System Settings. This should bring you to the Advanced
tab of a small dialog box.

ii. Click the Environment Variables button in the lower right.
iii. In the bottom half of this window, labeled System Variables, find the variable named PATH or Path.
iv. Click to highlight it, then click the Edit button.
v. Make sure your cursor’s at the rightmost edge of the Variable Value text box, then type “;C:\Python26”

without the quotes.
vi. Click Ok, then Ok, then Ok again. Logout and back in, or restart your computer.

(b) On MacOS:

i. Congratulations! The Python installer should automatically include python in your PATH so it’s ac-
cessible from the default Terminal application.

1.3.2 jEdit

The yin to Python’s yang, though, is jEdit, a "Programmer’s Text Editor," to quote its web site. And if you’re
wondering why I’m not referring to it as jedit.exe, check out what lives in C:\Program Files\jEdit (if you’re a
Mac user, look over somebody’s shoulder). It’s not an executable file! jEdit is actually itself written in Java, so what
ends up running is a Jar file, which is kind of like an .exe file except not.

You can think of jEdit as Notepad on frighteningly scary performance-enhancing drugs. What Word is to Wordpad,
jEdit is to Notepad. It only knows how to edit plain text files - it doesn’t do any sort of fancy formatting, underlining,
tables, all that sort of thing - but it knows all sorts of crazy ways to edit them. At its core, though, all jEdit is doing
is manipulating plain old textual characters in a plain old file, so don’t be afraid of it! Don’t forget that you can
browse through its help files by going to the Help menu, and there’s all sorts of introductory information linked
from its web page as well. The five features that make jEdit a suitable choice for our purposes (or for any scripting
language) are:

• Syntax highlighting. jEdit knows how to paint different parts of a Python program different colors. No
explanation needed - as soon as you start your first program, you’ll see what I mean.

• Line numbering. Python errors tell you on which line the error occurred, and jEdit tells you which line you’re
currently editing. When you need to fix a bug, making those two numbers match is key.

• Parenthesis and bracket matching. When you close a) or], jEdit will highlight the corresponding [or (. In
complex statements, this is a lifesaver.

• Non-lobotomized search-and-replace. Try finding a text pattern containing a wildcard using Notepad.

• Automatic indentation and tab/space conversion. I don’t use this a lot myself (I’m a hard-tabs kind of guy),
but it can be a boon for Python in particular, which is a bit OCD about whitespace.

What do we want you to know to get started? Well, the easy parts are all of the usual file operations: New, Open,
Close, Save, and Save As are all available on the File menu. Similarly, it has all of the standard editing operations
under, well, the Edit menu: Undo, Redo, Cut, Copy, Paste, and Select All. Almost all of these (and almost every
other operation in jEdit) has a corresponding keyboard shortcut. Open is Control-O (or Command-O on a Mac),
Copy is Control-C (you’ve probably seen that one before), and so forth. But because jEdit is a "programmer’s"
text editor, it provides a whole slew of useful shortcuts that Notepad (and even Word) excludes. The table below
contains only a few of the ones I use most; don’t be afraid to dig through jEdit’s menus and try things out. As long
as you don’t save over any important files, you can’t do any damage - really!

H02-7

jEdit Quick Reference

Task Shortcut Menu Effect
New Ctrl-N File Create new empty file
Open Ctrl-O File Open existing file
Close Ctrl-W File Close current file
Save Ctrl-S File Save current file
Save As File Save current file with new name
Undo Ctrl-Z Edit Undo previous action
Redo Ctrl-E Ctrl-Z Edit Redo previous undone action
Cut Ctrl-X Edit Remove selection, place in clipboard
Copy Ctrl-C Edit Copy selection to clipboard
Paste Ctrl-V Edit Insert contents of clipboard
Select All Ctrl-A Edit Select entire current file
Go to Line Ctrl-L Edit Move cursor to line number
Find/Replace Ctrl-F Search Find/replace given text
Next Editor Ctrl-Page Up View Activate next open file
Previous Editor Ctrl-Page Down View Activate previous open file
Indent Selection Alt-Right Arrow Edit/Indent Move selected lines one tab to the right
Unindent Selection Alt-Left Arrow Edit/Indent Move selected lines one tab to the left
Select Text Shift-Left/Right Arrow Select text while moving cursor

Shift-Home/End
Shift-Page Up/Down

Move by Word Control-Left/Right Arrow Move cursor by word rather than character
View Line Number Watch the lower left corner of your window

To download jEdit, visit http://www.jeditor.org

To make jEdit the default editor for .py files on Windows:

1. Start up a command prompt.

2. Type the following, including quotes, and modifying the paths as necessary to reflect what’s actually on your
computer:
ftype Python.Source="C:\Windows\System32\javaw.exe" -jar "C:\Program Files\jEdit\jedit.jar" -reuseview

"%1"

3. This command should silently complete. If you don’t get any weird errors, type the following two lines:
assoc .py=Python.Source

assoc .pm=Python.Source

To make jEdit look less ugly on Windows:

1. Go to the Uilities menu and select Global Options.

2. Select Text Area, change Anti Alias Smooth Text to “subpixel”, and check the Fractional Font Metrics box.

H02-8

1.4 An Alternative

"You oughta know." - Alanis Morissette, "You Oughta Know"

Truth be told, I really dislike jEdit. It’s better than Notepad, but if you’re looking for a text editor, there are better
options (UltraEdit or Notepad++ on Windows, BBEdit or TextWrangler on a Mac). For that matter, we’re not even
interested in it as a text editor - we want a Python editor. And if you’re after a Python editor, there are way
better options. Allow me to suggest that everyone should, instead of jEdit, at least consider using Eclipse. Eclipse
was originally developed as, among other things, an integrated Java programming environment (referred to as
an Integrated Development Environment or IDE). It can be supplemented with the freely available PyDev tool,
however, to become an equally powerful Python IDE. This integration means that a single tool (Eclipse) replaces
the whole bundle (jEdit, the command prompt, and python.exe). This, of course, is a Good Thing.

"What!?!" you say? "Someone set up us the bomb? We went through all of that nonsense with PATHs and the
command prompt and Python and now you tell us we didn’t have to? Ahh!" But wait! Before you defenestrate
me (I score points for using that in casual conversation, right?), realize that this fruit of knowledge comes with the
usual disadvantages: Eclipse is itself complicated, arguably more so than jEdit, the command prompt, and Python
separately. However, by the same token, it’s also massively more powerful. Its syntax highlighting is better, its
error checking is better, it autodetects and autogenerates all sorts of things (yes, it autogenerates certain pieces of
code), it allows integrated debugging, in will automatically organize your source files... the list goes on and on.

So if I’ve managed to tempt you into trying this daunting morsel, begin with the following instructions:

1. Go to http://www.eclipse.org and click on the Download Eclipse button on the upper right.

2. Now we have a platform split (and yes, “for Java Developers” is right... for now):

(a) If you’re using Windows...

i. Choose "Eclipse IDE for Java Developers" and the 32-bit version (this is true, for complicated rea-
sons, even if you’re using a 64-bit OS), then on any of the mirror locations, then save the .zip file
somewhere.

ii. Expand the .zip file (depending on your system, you probably just need to double click it), which
should result in a folder named eclipse.

iii. Using Windows Explorer, drag the eclipse folder into your C:\Program Files folder.
iv. Then, inside of the C:\Program Files\eclipse folder, you should see a file named eclipse.exe.

Drag this file into your Start menu, then into the Programs menu, and then release it. This should
create an eclipse.exe entry in your Programs list, which you can then use to launch Eclipse.

v. Alternatively, you can right click and drag the eclipse.exe file to your desktop and choose "Create
shortcut here" to create an icon on your desktop instead of in your Start menu.

(b) If you’re using a Macintosh...

i. The web site should autodetect this fact, and the "Eclipse IDE for Java Developers" link will say "Mac
OS X" beside it. If so, you can download the file as per the first Windows instruction. If not, click on
"Packages for," then on "Mac OSX." If you get it, click through the warning screen about requiring
10.3 or higher, pick a mirror, and save the .tar.gz file somewhere.

ii. Expand the .tar.gz file (by double clicking it), which should result in a folder named eclipse.
iii. Using the Finder, drag the eclipse folder into your Applications directory.
iv. To launch Eclipse, double click on the Eclipse icon in the eclipse folder; it’ll look like a pretty blue

stripey ball. This is one case in which the whole Macintosh easy-to-use thing really shines!

3. When you start Eclipse for the first time, it’ll ask you to "Select a workspace." The default is fine, so check the
"Use this as the default and do not ask again" box and press ok.

(a) Do, however, notice the path that it uses! Just as you saved your jEdit .py files under C:\Users\chuttenh\Desktop\problems02
or ~/Desktop/problems02, Eclipse will default to saving your .py files to something like C:\Users\chuttenh\workspace\ProjectName
or ~/Documents/workspace/ProjectName. So that’s the directory you’ll have to browse to when you sub-
mit them online.

H02-9

4. Then (this is still the first time only) you’ll see a mostly blue screen with some funky icons in odd places.
Ignore them. The only one you want is the little curvy arrow in the upper right, which will get rid of this
welcome business and get us to the real stuff. When you mouse over, it’ll say Workbench; click on it, and your
world will change.

5. You’re now looking at the Eclipse main view, also known as the Resource perspective. It consists of four main
parts:

(a) The Package Explorer on the left, which lists projects (collections of related files), files, and folders.

(b) The Outline on the right, which provides some random Python information (I don’t really use it much;
think of it as a bird’s-eye view of your program).

(c) The Editors in the upper middle, which are just like text editing windows in jEdit (but way better!)

(d) Various tabbed windows along the bottom, primarily Tasks, the Console, and Problems. If these aren’t
all present, you can get to them by going to the Window/Show View menu and selecting the missing
window (don’t forget to select Other... and browse through your options if something you want isn’t in
the default list).

6. Now let’s install PyDev, since Eclipse only knows about the Java programming language by default. We’ll
follow the instructions at: http://pydev.org

(a) From the Help menu, choose Install New Software.

(b) Click the Add button, type PyDev in as the Name, and the URL http://pydev.org/updates for the
Location.

(c) Click Ok, then select your new PyDev repository from the Work With dropdown menu (if it doesn’t
auto-activate).

(d) Check the box beside PyDev, then click Next.

(e) Click Next again for no real reason, then accept the license and click Finish.

(f) While PyDev is installing, it will ask you to check a box accepting the Aptana certificate; do so, then click
Ok.

(g) Restart Eclipse when prompted at the completion of PyDev’s install.

7. The first thing you must do after PyDev installs (as described at http://pydev.org/manual_101_root.html)
is configure the Python interpreter. This is a one-time deal, so it only happens the first time you start Eclipse
after installing PyDev:

(a) Go to Windows/Preferences and expand the Pydev item in the left pane of the resulting dialog box.

(b) Select Interpreter - Python, and on the upper part of the resulting right pane, click New.

(c) Type “Python 2.6” for the Interpreter Name (without quotes), click Browse, and find your Python binary
(e.g. C:\Python26\python.exe on Windows).

(d) Click Ok, then Ok, then Ok, then Ok.

8. Finally, let’s create a new Python project - say, for your first assignment.

(a) First, activate the Python perspective by going to Window/Open Perspective/Other and select Pydev.

(b) Right click anywhere in the blank area of the Package Explorer pane and select New/Project...

(c) Expand the Pydev folder in the window that appears, click on the Pydev Project line, and hit Next.

9. In the Project name line, type something like "Problems 02" (without the quotes, of course), and then press
Finish.

10. Let’s try creating and running a problems02.py file the Eclipse way.

(a) Expand the Problems 02 project, right click the src directory, and select New/Pydev Module.

(b) Ignore the Module line. In the Name line, type "problems02" (note the lack of the .py extension!)

(c) Press Finish.

H02-10

11. Whoah! Eclipse just magically generated your problems02.py file, including a proto-docstring that you can
reformat to suit the course requirements. Let’s ignore that for now, though, and demonstrate how Eclipse can
run Python files by leaving the docstring as-is and adding the following line to the bottom of the file:

print("Hello, world!")

13. Let’s run this thing! From the Run menu, select Run, or just hit Control-F11. When Eclipse asks you how to
run the file (which it should only do the first time), select Python Run. If all goes as planned, the string “Hello,
world!” should appear in black text in the Console window at the bottom of the screen. This Console takes
the place of output that would normally go to the command prompt: anything you print appears in black
text, and errors appear in red. Congratulations - you’ve written your first Python program the cool way!

This is not, of course, to disparage jEdit; I’m just personally a big fan of Eclipse, and goodness knows there are
professional programmers who use jEdit and the command prompt instead. For that matter, development envi-
ronments are something of a religious matter among programmers (Google "vi vs. emacs" sometime when you’re
bored), and there are nearly as many cool ways to develop as there are cool developers. So consider this little
tutorial an option (well, a suggestion, really) rather than a requirement.

To offer some parting words about Eclipse, keep in mind that we’ve barely scratched the surface. If you thought
jEdit had a lot of features, Eclipse blows it away. You can configure almost everything that it does, and it provides
several additional perspectives and view windows aside from the ones that we’ve explored. If you’re curious, poke
about in the Window menu Preferences dialog, and you can see the veritable plethora of settings and options made
available to you whether you want them or not. Finally, feel free to ask me more questions about Eclipse! I do
strongly encourage you to try it out, and we’re more than willing to spend time during office hours helping you to
set it up.

H02-11

