Monday #3
5m	Announcements and questions
Second problem set will run through Wednesday night so there's time for functions to sink in
15m	Function recap
Functions and function calls
Functions, also referred to as methods, are reusable blocks of instructions to perform a specific task
	They can operate on zero or input input data of arbitrary types
	They can produce zero or one output, called the return value or result of the function
Functions store instructions, but they do not execute them until they're called
	Calling a function tells it to run its instructions on a particular set of input values
	These inputs are called the arguments that are passed to the function
	A typical Python function call looks like this: function_name(arg1, arg2)
	A function call consists of the name, followed by zero or more arguments
		The arguments are surrounded by parentheses and separated by commas
Some functions have restrictions on what types of arguments they understand, some don't
	Just like operators; + makes sense both for numbers and strings, but not **
Some functions produce side effects in addition to (or instead of) a return value
	One common example is print("example"), which inputs one string argument
	It then displays it on the screen, but does not return it for further processing
	A counterexample is abs(-2) 2, which takes one numeric argument and returns its absolute value
Substitution works for arguments: any place you can pass a data value, you can pass a variable containing it
	For example, dValue = -5.6, abs(dValue) 5.6
	For example, adValues = [-1, 2], abs(adValues[1]) 2
And just like mathematical functions, substitutions work for functions as well (composition)
	For example, round(abs(-1.8)) 2.0
Function targets and objects
Some functions also take a special argument called their target
	This special argument is not included between parentheses, and is also the object of the function
	Functions can be targeted to a particular object (which is just another data value) using the . operator
	For example, the replace function targets a string and takes two additional string arguments
		The first is a substring to search for, the second is a new substring to replace it with
Thus "test".replace("es", "arge") "target"
Just like normal arguments, substitution by variables (or other instructions) works for targets
	For example, strValue = "fast", strValue.replace("a", "ea") "feast"
	For example, "test".replace("e", "a").replace("st", "ste") "taste"
For example, abs(-len("a" + "bey".replace("e", ""))) 3
15m	Primitives: built-in functions
Utility functions
print(x) display: outputs x to the screen, returning nothing
len(x) length: returns the number of elements in string, list, or dictionary x
cmp(x, y) comparison: returns -1 if x<y, 1 if x>y, and 0 otherwise
str(x), float(x), int(x) type conversion: returns x coerced into the requested type
Numeric functions
abs(x) absolute value: returns the absolute value of number x
round(x) rounding: returns number x rounded to the nearest integer (but as a real number!)
min(x), max(x) minimum/maximum: returns smallest/largest value in list x
sum(x) summation: returns the sum of elements in list x
String functions
x.strip() trimming: returns a copy of string x with all leading and trailing whitespace removed
x.find(y) substring find: returns the index of substring y within x, or -1 if it's not present
x.replace(y, z) replacement: returns a copy of string x with the first occurrence of y replaced with z
List functions
x.append(y) element addition: extends list x to include element y, returning nothing
x.pop() element removal: removes and returns the last element of list x
x.reverse() reversal: reverses the order of elements in list x, returning nothing
reversed(x) reversal: returns a copy of list x with elements in reverse order
x.sort() sorting: sorts the elements of list x in ascending order, returning nothing
sorted(x) sorting: returns a copy of list x with elements in sorted ascending order
Dictionary functions
x.keys() key list: returns a list of all keys in dictionary x (in no particular order)
x.values() value list: returns a list of all values in dictionary x (in no particular order)
x.items() pair list: returns a list of all key/value pairs as length-two lists (in no particular order)
15m	Defining functions
Storing blocks of instructions for future use
Python variables are named buckets that store exactly one value
	That value can sometimes be a reference to a whole collection of organized values
		Ordered in a list, indexed in a dictionary
	Functions are no different - but the values are instructions, not data
		Remember that these are really the same thing to the computer!
We can create our own functions, which are stored blocks of instructions to be executed in the future
	The only special thing to remember is that we must create unbound variables to hold future inputs
	These are the arguments to the function: they have no value when defined, but are given ones when called
Function definition syntax
def function_name(argument1, argument2, ...):
	instruction1
	instruction2
	...
	return value
The def keyword indicates that the following variable name will be assigned to a function
	Function name is followed by zero or more argument names, wrapped in parentheses, separated by commas
	The function is a block, and thus indented, and can contain one or more instructions like any other block
The return keyword can be optionally used anywhere within a function
	When used, can be provided with one value, which will be the return value of the function
	Often used at the end of a function to return a calculated result
	Works very much like break - when encountered earlier, immediately stops and leaves the function
Example: factorial
def factorial(iN):
	iRet = iN
	for i in range(2, iN):
		iRet *= i
	return iRet
factorial(1) 1
factorial(3) 6
factorial(6) 720
factorial(500)
12201368259911100687012387854230469262535743428031928421924135883858453731538819976054964475022032818630136164771482035841633787220781772004807852051593292854779075719393306037729608590862704291745478824249127263443056701732707694610628023104526442188787894657547771498634943677810376442740338273653974713864778784954384895955375379904232410612713269843277457155463099772027810145610811883737095310163563244329870295638966289116589747695720879269288712817800702651745077684107196243903943225364226052349458501299185715012487069615681416253590566934238130088562492468915641267756544818865065938479517753608940057452389403357984763639449053130623237490664450488246650759467358620746379251842004593696929810222639719525971909452178233317569345815085523328207628200234026269078983424517120062077146409794561161276291459512372299133401695523638509428855920187274337951730145863575708283557801587354327688886801203998823847021514676054454076635359841744304801289383138968816394874696588175045069263653381750554781286400L
factorial(0) ???
Example: list find
def list_find(aList, pValue):
	for i in range(len(aList)):
		if aList[i] == pValue:
			return i
	return None
list_find([], 1) None
list_find([1, 2, 3], 4) None
list_find([1, 2, 3], 1) 0
list_find([1, 2, 1], 1) 0
list_find([1, 2, 3], 2) 1
Example: binding sites
def binding_sites(astrPromoters, strSite):
	afRet = []
	for strPromoter in astrPromoters:
		afRet.append(strPromoter.find(strSite) >= 0)
	return afRet
binding_sites(["accat", "ttt", "tcat", "gatagata"], "ca")
[True, False, True, False]
binding_sites([], "gata") []
binding_sites(["yabba", "dabba", "doo"], "abb") [True, True, False]
Example: codon count
def codon_count(strDNA, iFrame):
	hashRet = {}
	for i in range(iFrame, len(strDNA), 3):
		strCodon = strDNA[i:(i + 3)]
		hashRet[strCodon] = 1 + hashRet.get(strCodon, 0)
	return hashRet
codon_count("ACTCAT", 0) {"ACT" : 1, "CAT" : 1}
codon_count("ACTACT", 0) {"ACT" : 2}
codon_count("AACATCATTTT", 2) {"CAT" : 2, "TTT" : 1}
codon_count("ACATCATA", 1) ???
10m	Modules and importing
Namespaces
Functions are just variables whose value references a set of instructions to run
Python groups all variable names into namespaces or environments
	Under certain circumstances, a block can prevent its variables from being used outside
	We've seen this earlier for local environment blocks in functions
Just like functions group local variables, each Python file is a module that groups its own variables
	Unlike functions, variables within modules are accessible using the dot operator .
This is the same dot operator that targets functions; in this case, it targets a name to a namespace
Referring to my local variable named aiBob: aiBob
Referring to a variable named aiBob in another module frank: frank.aiBob
	Both functions and values in other modules can be targeted this way, e.g. frank.do_something()
You can specify which other modules are available to target using the import command
	For example, import frank would let you run the commands above
	This is similar to taking a whole frank.py file and copy/pasting it into your current file
	But Python preserves the local environment by forcing you to use the . operator to access frank
This is important because Python provides a bunch of built-in functions as modules you can import
	Keeping these in an enclosed namespace helps to keep the environment clean by preventing name litter
	For example, abs is a global function; you can't safely write your own function named abs
	However, the function random to generate a random number lives in the module random
		Thus it can only be accessed by calling import random and then random.random()
		This lets you define your own local def random() function with impunity
Importing your own files
If you write a file named bobble.py, you can access it like any other module using import bobble
	If you're importing it from bibble.py, the two files must be in the same directory
	Can specify a search path PYTHONPATH, but don't worry about this
	See: http://docs.python.org/tutorial/modules.html
10m	import sys
The sys module is easily the most-used Python module
	It provides functions and values that let your Python programs interface with the outside world
	Hence "sys" for system: it links Python programs to the system on which they're running
The variable sys.argv holds the list of command line arguments, always as strings
	You can provide additional arguments to your script when you run python script.py one 2 three
	sys.argv[0] is always the file name of your Python script
		But then in the above case, sys.argv ["script.py", "one", "2", "three"]
		Thus len(sys.argv) - 1 is the number of additional arguments provided
Example: factorial.py
Take our factorial function and save it in a file called factorial.py
Add onto the bottom:
	if __name__ == "__main__":
		iN = int(sys.argv[1])
print(factorial(iN))
Running:
python factorial.py 5 → 120
python factorial.py 10 → 3628800
Now you don't have to edit the code itself to generate new information!

20m	sys.stdin and sys.stdout
Streams
The other way in which sys hooks your program into the outside world is through I/O streams
	I/O standards for input/output: ways to open files, read their contents, and save new ones
Streams are a common model in many programming languages for reading and writing file data
	A stream object is a special type of collection, like a list that "contains" a file's contents
	Each element in the collection is one line of text
	A file you're reading in has a bounded length, just like a list
		You can iterate over lines of text just like elements in a list
	A file you're writing has no "length" per se, though - you can just keep outputting lines!
		Right up until you create a file so big it fills up the hard drive...
Think of a stream data object like a hose
	You can suck data from it (if it's an input stream) or push data into it (if it's output)
		Some streams are both, some are input or output only
	Although Python is particularly set up to make handling lines of text easy, other data's handled this way too
Standard input and output
The command line and all associated programs know about two special streams
	Standard input: sys.stdin
	Standard output: sys.stdout
	The former reads data (typically lines of text) from the command line
	The latter writes text to the command line - exactly the same as print!
		Both can also be redirected from or to a file; you'll see this in lab
Think and standard I/O as data provided from or to the console itself
	Standard input = lines of text typed into the console
	Standard output = lines of text displayed onto the console
Data from the keyboard or to the screen can be redirected from or to a file instead
	< hooks the contents of a file up to standard input:
		python program.py < filename.txt
		Equivalent to typing the contents of filename.txt into the console, one line at a time
	> sends anything on standard output to a file
		python program.py > filename.txt
		Prints program.py's output to filename.txt instead of the console, one line at a time
		THIS WILL OVERWRITE THE CONTENTS OF filename.txt!!!
		Note that anything you output using print goes to standard out
			We've been using it all along!

Input streams
Python treats streams like special lists or collections in which each line of text is an element
	for strLine in sys.stdin:
		do stuff
	Two of the most useful things to do to input lines of text are strip them and split them
		" some string\n\n".strip() "some string", removes leading/trailing whitespace
		"some\tstring".split("\t") -> ["some", "string"]
Divides string into list on given delimiter
For example, you can select the first (or nth) column from tab-delimited text:
	for strLine in sys.stdin:
		astrLine = strLine.strip().split("\t")
		print(astrLine[0])
Output streams
sys.stdout is accessed by targeting it with the write function
	sys.stdout.write("some stuff")
	Two big differences from print:
		No newline - append a "\n" if you want one
		Argument must be a single string; use str() and + concatenation as necessary
One of the most useful things to do to output lines of text is join them
	"\t".join(["some", "array"]) -> "some\tarray"
	Reverse syntax from split: delimiter first, array as argument
	Common paradigm is:
		astrLine = strLine.strip().split("\t")
		do some stuff to modify the line of tab-delimited text
		sys.stdout.write("\t".join(astrLine) + "\n")
Example: remove the NAME and GWEIGHT columns and the EWEIGHT row from a PCL file
	import sys
	for strLine in sys.stdin:
		astrLine = strLine.strip().split("\t")
		if astrLine[0] == "EWEIGHT":
			continue
		astrNew = astrLine[0]
		for i in range(3, len(astrLine)):
			astrNew.append(astrLine[i])
	 	print("\t".join(astrNew))
	Last line is equivalent to sys.stdout.write("\t".join(astrNew) + "\n")

15m	Reading and writing other files in Python
Standard input and output are not the only streams!
	Any file can be opened (by name) as input; any file can be opened for output
	Opening a file creates a stream object (input or output) that can be used like sys.stdin or sys.stdout
Input file streams
open("filename.txt") will open filename.txt for reading
	This behaves exactly like sys.stdin
	for strLine in sys.stdin:
		do stuff
	for strLine in open("filename.txt"):
		do stuff
This is particularly useful with file names provided as command line arguments
	In a script called istream.py
		strFile = sys.argv[1]
		for strLine in open(strFile):
			do stuff
	This can then be called as python istream.py path/to/input_file.txt
		Equivalent to python istream.py < path/to/input_file.txt if you read standard in instead
Output file streams
open("filename.txt", "w") will open filename.txt for writing
	Be careful! This will wipe the file if it already exists (or create a new empty file if not)
Typically used with the with keyword, which defines a variable to "contain" the output stream
	Output stream variables behave exactly like sys.stdout
	with open("filename.txt", "w") as ostm:
		ostm.write("some string\n")
You can again do this with file names as command line arguments
	In a script called ostream.py
		strFile = sys.argv[1]
		with open(strFile, "w") as ostm:
			do stuff
	This can then be called as python ostream.py path/to/output_file.txt
		Equivalent to python ostream.py > path/to/output_file.txt if you write standard out instead
0m	Topics for lab
import random
Standard error and sys.stderr

[bookmark: _GoBack]Standard input, output, and error on the command line
Redirects: < and >
Pipes: |
import csv
Reading
Python functions:			Model, Chapter 2 p21-30, 34-41, 44-45
Python I/O:					Model, Chapter 3 p72-78, 95-97
Python imports, sys:		Model, Chapter 6 p209, 212-215, 253-254

